
January 9, 2004 CL 04-0053 Page 1 of 30

First Code Improvement Completed
Numerical Simulations For Active Tectonic Processes:
Increasing Interoperability And Performance

JPL Task Order: 10650

Milestone F – Code Improvement due date: 6/30/2003

First code improvement (functional enhancement and speedup). Documented
source code made publicly available via the Web.

• PARK on 256 CPU machine with 150,000 elements, 5,000 time steps in
the same time as the baseline case

• GeoFEST - links to PYRAMID and runs on a parallel machine - Produce a
plot of scaled speedup that will show that we are maintaining efficiency as
the number of processors and problem size increase. Assuming
availability of a 64 CPU Beowulf, 1,250,000 elements, 1000 timesteps, in
the same time as the baseline case.

Team

Andrea Donnellan:
Principal Investigator

Jet Propulsion Laboratory
Mail Stop 183-335
4800 Oak Grove Drive
Pasadena, CA 91109-8099
donnellan@jpl.nasa.gov
818-354-4737

Terry Tullis:
Fast Multipole Methods

Brown University
Box 1846, Brown University
Providence, RI 02912-1846
Terry_Tullis@Brown.edu
401-863-3829

Jay Parker:
Overall Software Engineer

Jet Propulsion Laboratory
Mail Stop 238-600
4800 Oak Grove Drive
Pasadena, CA 91109-8099
Jay.W.Parker@jpl.nasa.gov
818-354-6790

Geoffrey Fox:
Information Architect

Community Grid Computing Laboratory
Indiana University
501 N. Morton, Suite 224
Bloomington, IN 47404-3730
gcf@indiana.edu
812-856-7977

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 2 of 30

Dennis McLeod:
Database Interoperability

Professor
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781
mcleod@usc.edu
213-740-4504

John Rundle:
Pattern Recognizers

Center for Computational Science and
Engineering
U. C. Davis
Davis, CA 95616
rundle@geology.ucdavis.edu
530-752-6416

Greg Lyzenga:
Finite Element Models

Jet Propulsion Laboratory
Mail Stop 126-347
4800 Oak Grove Drive
Pasadena, CA 91109-8099
greg.lyzenga@jpl.nasa.gov
818-354-6920

Michele Judd:
Technical Task Manager
Jet Propulsion Laboratory
Mail Stop 183-335
4800 Oak Grove Drive
Pasadena, CA 91109-8099
michele.judd@jpl.nasa.gov
818-354-4994

Marlon Pierce:
Code Interoperability Software
Engineer

Community Grid Computing Lab
Indiana University
501 N. Morton, Suite 224
Bloomington, IN 47404-3730
marpierc@indiana.edu
812-856-1212

Lisa Grant:
Fault Database Architect

University of California, Irvine
Environmental Analysis and Design
Irvine, CA 92697-7070
lgrant@uci.edu
949-824-5491

Robert Granat:
Pattern Recognizers

Jet Propulsion Laboratory
Mail Stop 126-347
4800 Oak Grove Drive
Pasadena, CA 91109-8099
robert.granat@jpl.nasa.gov
818-393-5353

Teresa Baker:
GeoFEST Code Verification

Jet Propulsion Laboratory
Mail Stop 300-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
teresa.baker@jpl.nasa.gov
818-354-4350

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 3 of 30

Overview

This milestone report documents Milestone F of the QuakeSim project
(Numerical Simulations For Active Tectonic Processes: Increasing
Interoperability And Performance) for NASA’s Earth Science Technology Office,
Computational Technology Program. The text of the milestone appears on Page
1, and requires demonstration of substantially larger problems than Milestone E
(7/30/02, Table 1) for the now-parallel earthquake codes PARK and GeoFEST.
Milestone F also requires demonstration of parallel scaling.
In the next section we describe the large problems that demonstrate code
improvement for the PARK and GeoFEST code. Then we give details for the
PARK code (code description, algorithm, numerical method, documentation,
scaling analysis, and scientific and computational significance), and for the
GeoFEST code (including the same topics).

Code Machine
Wallclock Time Processors Date Elements Time

Steps

PARK
Milestone E
(7/30/02)

Chapman
(AMES)

7.888 Hours
1 September 18,

2002 15,000 500

PARK
Milestone F

Chapman
(AMES)

7.879 Hours

256

August 15,

2003
150,000 5,000

GeoFEST
Milestone E
(7/30/02)

Solaris
workstation

(JPL)
13.7 Hours

1 July 30, 2002 55,369 1,000

GeoFEST
Milestone F

Thunderhead
(GSFC)

2.8 Hours
64 September 1,

2003 1,400,198 1,000

Table 1: Computer runs demonstrating baseline and Milestone F performance enhancements for
PARK and GeoFEST applications.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 4 of 30

Problems Used to Demonstrate Code Improvement

Table 1 summarizes the results for the improved code demonstration runs.
Additional runs demonstrating parallel scaling are detailed in Section 4.
The nature of the code improvements we describe is that problems of much
larger size than the baseline case are solved in the same time, by use of
advanced computing technology (Multipole methods for PARK, domain
partitioning for GeoFEST, and efficient MPI parallel coding for both PARK and
GeoFEST).
For the PARK code the problem demonstrating the improvement over baseline
has geometry shown in Figure 1. The boundary conditions (appropriate for the
geographic setting at Parkfield, CA) are the same as for the baseline case, but
the mesh density is increased from 15,000 to 150,000 rectangular elements, and
the problem duration is extended from 500 to 5000 time steps. Traditional
methods lead to work scaling with the square of the number of elements, and
linear with time steps. Our improvements are due to efficient parallel
implementation and use of a Multipole solution technique that scales much better
than a law quadratic in element count.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 5 of 30

B C

A

D

Figure 1. Views of grid geometry and distribution of
constitutive properties for PARK at three different scales.

A. Shows the overall geometry. The numbers are
distances in km, both vertically and horizontally from
the origin, which is at the earth’s surface at Middle
Mountain, directly above the hypocenter of actual
Parkfield earthquakes. Boundary conditions of 35
mm/yr slip rate are applied on the light brown areas,
while the blue area is locked with zero slip rate.

B. Closer view of the grid geometry. The large nearly
solid red area is a region with square elements ~65 m
on a side. Within it is an area at about 10 km deep
and 3 km horizontally that appears solid red at this
magnification, with ~22 m squares and ~7.4 m
squares.

C. Same area as in (B) showing contours of the constitutive parameter a-b without the grid. Instability can occur in areas
colored brown, the darkness being proportional to the tendency to be unstable.

D. Magnification of the finest area, showing the ~7.4 m elements and part of the area with ~22 m elements. As in (C) the
color shows the intensity of a-b.

PARK

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 6 of 30

For GeoFEST, the problem geometry is shown in Figure 2. Elastic and
viscoelastic deformation is simulated for 1.4 million finite elements, for a duration
of 1000 time steps. The significant increase is in the number of elements, which
was about 55,000 for the baseline case (also running 1000 time steps). Note
that the baseline case was modeled on the 1994 Northridge earthquake, using a
single fault of 300 square km in a domain of 240 x 240 x 100 km. The improved
demonstration case is based on the 1992 Landers event, using three closely
arranged faults within an 865 square km area in a domain volume area of 1000 x
1000 x 60 km.

Figure 2a: Finite element mesh LandersGap64 for GeoFEST milestone F improvement code
improvement problem. Colors indicate partitioning among processors (limited to 16 processors in
this image for clarity, actually 64 processors were used). Partitions cluster near domain center
due to the high mesh density that is used near the faults.

GeoFEST

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 7 of 30

Figure 2b: Fault segments and surface nodes for LandersGap64 mesh, center region.

Figure 2c:

GeoFEST simulated
surface displacement
from coseismic
Landers model,
displayed as InSAR
fringes (5.2 cm vertical
displacment is one
color cycle).

GeoFEST

GeoFEST

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 8 of 30

Supporting Documents

The top-level web site for the QuakeSim task is at http://quakesim.jpl.nasa.gov.
Source code for the three codes may be found at
http://quakesim.jpl.nasa.gov/download.html. Files required for the baseline
cases may be found at http://quakesim.jpl.nasa.gov/milestones.html.

The PARK Code

PARK is a model for unstable slip on a single earthquake fault. Because it aims
to capture the instability, it is designed to represent the slip on a fault at many
scales, and to capture the developing seismic slip details over an extraordinary
range of time scales (sub-seconds to decades). Its simulation of the evolution of
fault rupture is the most realistic of the tools in QuakeSim for that scale,
demonstrating the multi-scale approach of this project. When transformed into
an efficient parallel simulation, it will be a powerful tool for researchers seeking to
determine the nature and detectability of earthquake warning signals such as
surface strains and patterns of microseismicity.
In a typical application the PARK code will compute the history of slip, slip
velocity, and stress on a vertical strike-slip fault that results from using state-of-
the-art rate and state frictional constitutive laws on the fault, which is currently
that for a specific geographic setting at Parkfield, California. The boundary
conditions are those appropriate for Parkfield, and the distribution of constitutive
properties on the fault zone are as realistic as our ability to characterize the
subsurface properties of the fault there allows. The methods developed in solving
this problem can be generalized to other geologic settings in which the fault
geometry and the boundary conditions are not so simple and multiple faults are

Figure 2d:

GeoFEST simulated
postseismic surface
displacement from
Landers model after
500 years of
viscoelastic relaxation
(at the end of the
GeoFEST Milestone F
case of Table 1). Color
scale of InSAR fringes
is that of Figure 2c.

GeoFEST

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 9 of 30

involved. The fault is represented by a rectangular grid with highly variable mesh
density (Figure 1).

Algorithm
The main program is a boundary element program that determines the stress on
every element of the fault surface due to slip on every other element, using a
Greens function approach. The fault constitutive law is used to determine what
the slip velocity will be for that stress. The velocity multiplied by the time step
gives the slip for calculating the stress in the next time increment. This involves
the forward time integration of coupled ordinary differential equations.

Numerical Methods
Numerically, PARK is a boundary element program that determines the stress on
every element of the fault surface due to slip on every other element, using a
Greens function approach. This is the first earthquake simulation code to seek
and achieve enhanced scalability and speed by employing a Multipole technique
(documented below). The Multipole experience gained here will also be
transferable to the Virtual California code and other boundary element
simulations. The power of massive parallel computing is required for this problem
in order to support many small slip patch elements needed to cover the
nucleation scale that initiates the instability.
The integration is done with a fifth order Runge-Kutta1 scheme with adaptive step
size control. Because the time-steps range over ten orders of magnitude, the
adaptive step-size control is an essential element in the solution. The time steps
range depending on whether the fault is slipping very slowly in the interseismic
period or very fast during an earthquake.
The main program calls a variety of subroutines and the one of these subroutines
that calculates the derivatives used in the forward time integration itself calls a
Fast Multipole library that is suitable for such Green's functions problems. The
Multipole approach allows a number of computations to scale as N log N rather
than N2 as would otherwise be the case. This Fast Multipole approach allows
determination of the degree of grouping of the remote cells based on an
analytical approximation to the Green’s function. In order to reduce computation
time it also renumbers the elements so that those that are near in space are also
near in memory.

1 Runge-Kutta is a method for forward integration of differential equations that involves calculating
derivatives of the functions at the current time and several fractions of potential time-steps in the
future, appropriately weighting these derivatives estimating the best derivative value to use and
determining the value of the function at the new time by multiplying that best derivative by the
appropriate time-step. The fifth-order Runge Kutta method compares estimates made using two
different time-steps and, based on this comparison, determines whether a smaller or larger time-
step should be used for the next step. This allows for adaptive time-stepping which is extremely
important in problems such as this where the time-steps can vary as much as ten orders of
magnitude, depending on whether interseismic or a coseismic behavior is involved.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 10 of 30

Parallel Implementation

The flow of the program and the functions of its main routines are found in the file
Code_Description.doc posted at http://quakesim.jpl.nasa.gov/milestones and
also http://quakesim.jpl.nasa.gov/documentation. The main program and most of
its subroutines are written in FORTRAN 90. These programs were converted to
use MPI to run in parallel for the First Code Improvement Milestone.
The main program reads inputs and sets up the problem, carries out a time-
stepping loop that integrates the slip and stress field forward in time, and writes a
summary and closes files at the end. The dominant task is a function “DERIVS,”
which uses a fault constituitive relationship to determine slip velocity based on
local stress, includes effects of shear wave speed and radiation damping, and
uses the Multipole library to sum the stress contributions of the slip on all fault
elements to determine the local stress. So, within a single time step the objective
is to integrate the history using variable-step Runge-Kutta based on the stress-
velocity interactions. In each time step “DERIVS” is called a total of six times,
once initially by the main program and five more times by the integrator, to result
in a fifth-order Runge Kutta integration. “DERIVS” relies on the Multipole code so
it calls “sumtree” to gather all the contributions to local stress, and then
determines the local stress and slip temporal derivatives from that. Finally it calls
“forgettree” to clear the Multipole structure.
In the parallel version, a single processor reads the geometry and partitions it
among the remaining processors, sending a portion of the geometry and local
properties to each one. Within the loop over time steps “DERIVS” uses the
Mulipole functions similar to the sequential code, except that “sumtree” is
designed for parallel use and has internal MPI calls.
The function computing the stress interactions between fault elements dominates
the work in the problem. This interaction is made fast and efficient by using a
proven parallel Fast Multipole library. Parallel decomposition was added to
portions of the remaining code in order to make good use of this parallel library.
We link the Fast Multipole library of Salmon and Warren (Salmon and Warren,
1997; Warren and Salmon, 1997), which is written in parallel using MPI.

Documentation
Software documentation is summarized in this report and can be found, in full, in
the subdirectories of the 1st_Code_Improv_Milestone directory that is accessible
at the public URL http://www.servogrid.org/slide/GEM/PARK.

For the purpose of verifying that the First Code Improvement Milestone run is as
described in the “Milestone_Certification_Data” file and repeating the run if
desired, the compiled files and documentation are available on turing, an SGI
Origin 3000 at NASA Ames. This pre-compiled version, on a NASA Ames
machine, uses two copyrighted numerical recipes subroutines, which are

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 11 of 30

available in the src-bin subdirectory of
turing:/u/tullis/1st_Code_Improv_Milestone. The subroutines are easily and
inexpensively available, however they cannot be posted on the public web site.
Source code and files needed to compile PARK, as well as input files for
verification of the First Code Improvement run have been placed in unix-
compressed tar files available in two locations. The first is a website
(http://www.servogrid.org/slide/GEM/PARK/1st_Code_Improv_Milestone/Downlo
ads) and the second is two of the SGI Origin 3000s at NASA Ames (turing or
“chapman:/u/tullis/1st_Code_Improv_Milestone/Downloads”). On the Origin
3000s, the directory Downloads contains two files,
“PARK_Package_1st_Improv.tar.Z” and “PARK_Package_NR.tar.Z”. The files
are identical except for the two copyrighted numerical recipes subroutines, which
are only included in the “PARK_Package_NR.tar.Z” version on turing. Except for
the presence or absence of these two subroutines, both of these tar files will
create the Multipole library, the source files for the PARK fault application, and
the input files for the First Code Improvement Milestone run. On the website,
only the “PARK_Package_1st_Improv.tar.Z” file exists, so that the copyrighted
subroutines are not made public. See either the “README-src-bin.txt” file in the
src-bin directory or the header for the “park.f” file to learn what needs to be done
to create these numerical recipes subroutines.
When the tar files are extracted and decompressed, compiling the libraries and
the executable will create two files in the t17-7/Objfiles/IRIX64 directory,
“libsw.a” and “mpmy_seq.o”. In addition, object files and the executable file
(“park”) will be created in the src-bin directory.

Scaling Analysis

In the directory scaling, found in the same 1st_Code_Improv_Milestone
directory in which this file is found, there are a number of files that show how the
job scales both with the number of elements and the number of processors.
Thirty-six scaling runs were done, involving all the combinations of the number of
elements used (712, 5,292, 15,000, and 150,000) and number of processors
used (1, 2, 4, 8, 16, 32, 64, 128, and 256) (Table 2, Figure 3). All these scaling
runs were run for 100 time steps, whereas the full 150,000 element, 256
processor First Code Improvement Milestone run was done for 5,000 time steps.
In the scaling directory is a data table giving the walltime for all 36 scaling runs,
as well as five plots showing dependence of walltime, speedup, efficiency, and
overhead on number of elements and number of processors.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 12 of 30

Table 2: Table 2 shows the problem sizes and run times of PARK on chapman using several
different numbers of processors. In order to make this scaling study, the milestone problem was
reduced to 100 time steps (rather than 5,000) These numbers form the basis for all the plots
shown in Figure 3.

nprocs elements time steps walltime idn iremain elements/nproc

1 712 100 0:01:13 0 712 712
2 712 100 0:01:01 357 355 356
4 712 100 0:00:48 179 175 178
8 712 100 0:00:41 90 82 89
16 712 100 0:00:41 45 37 45
32 712 100 0:00:48 22 30 22
64 712 100 0:01:11 11 19 11
128 712 100 0:01:39 5 77 6
256 712 100 0:01:45 2 202 3
1 5292 100 0:11:33 0 5,392 5,292
2 5292 100 0:08:58 2,697 2,695 2,646
4 5292 100 0:05:56 1,349 1,345 1,323
8 5292 100 0:03:48 675 667 662
16 5292 100 0:02:07 338 322 331
32 5292 100 0:01:34 169 153 165
64 5292 100 0:01:42 85 37 83
128 5292 100 0:02:28 42 58 41
256 5292 100 0:03:53 21 37 21
1 15000 100 0:32:12 0 15,000 15,000
2 15000 100 0:29:57 7,501 7,499 7,500
4 15000 100 0:15:00 3,751 3,747 3,750
8 15000 100 0:09:51 1,876 1,868 1,875
16 15000 100 0:05:17 938 930 938
32 15000 100 0:02:56 469 461 469
64 15000 100 0:02:18 235 195 234
128 15000 100 0:02:37 118 14 117
256 15000 100 0:04:24 58 210 59
1 150000 100 7:57:47 0 150,000 150,000
2 150000 100 7:41:56 75,001 74,999 75,000
4 150000 100 4:02:22 37,501 37,497 37,500
8 150000 100 2:01:39 18,751 18,743 18,750
16 150000 100 1:17:24 9,376 9,360 9,375
32 150000 100 0:38:39 4,688 4,672 4,688
64 150000 100 0:20:48 2,344 2,328 2,344
128 150000 100 0:12:12 1,172 1,156 1,172
256 150000 100 0:09:27 586 570 586

Data for Scaling Runs for PARK

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 13 of 30

Figures 3a, 3b, 3c (below): Several ways of presenting how run time varies with problem size
and number of processors for PARK on chapman (Table 2).

Figure 3a. PARK: Walltime. Generally we find that problems complete faster
when more processors are applied. Very small problems take longer to run on
many processors, and moderate problems have an optimal machine size that
should not be exceeded.

PARK

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 14 of 30

Figure 3b. PARK: Speedup. While two processors do not always run
substantially faster than one, the larger problems examined make excellent
use of additional processors. Generally one must use at least a few hundred
elements per processor to obtain reasonable speedup.

PARK

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 15 of 30

The scaling data show that not much speedup is gained by going from one to two
processors. Further work to understand this behavior could allow us nearly a
factor of two in efficiency in future runs. For the largest job (150,000) elements,
the efficiency and overhead are nearly constant from 2-8 processors. Efficiency
falls off between 8 and 16 processors and is constant from 16-32 processors. For
64, 128 and 256 processors, efficiency falls off gradually. This falloff is

Figure 3c: PARK: Efficiency. Ideally 16 processors would result in a speedup
of 16 (for perfect algorithms and instantaneous communication time); here we
magnify the degree to which we fall short of that. The drop from 1 to 2
processors may be due to resource contention and will be studied further.
The remaining portion of the curves shows reasonably high relative efficiency
for the largest problems, especially for cases where several hundred
elements reside in each processor.

PARK

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 16 of 30

presumably due to an insufficient number of elements per processor, the
numbers being 2343, 1171, and 585, respectively, as the plots show. This effect
is seen even more dramatically for the jobs with a smaller number of elements
because, as the number of processors increases, the number of elements per
processor gets so small that a large amount of time is spent communicating
between processors. The falloff between 8 and 16 processors on the 150,000-
element problem suggests that the optimum number of elements per processor
may be about 20,000.

Scientific and Computational Significance

Achieving the First Code Improvement Milestone is significant because it opens
the way to run significantly sized problems. For the first time it presents to the
scientific community fast parallel codes that allow creating simulations of the
entire earthquake cycle on a fault in a 3D model that uses the most accurate
description of fault friction, rate and state friction, and the quasi-dynamic radiation
damping approximation to full elastodynamics. We now have the potential for
greatly increasing the number of elements that can be included in the model over
what could be done in the past.
Enough elements can now be used that is it possible to represent a reasonably
sized fault with elements that are small enough that they can properly represent
the behavior of a continuum. Larger numbers of elements also allow occurrence
of earthquakes with a large range of sizes in the simulation. It will now be
possible to simulate small earthquakes occurring in isolation and ones that
cascade or grow into larger ones. It is currently not understood what causes
small earthquakes to grow into large ones or stop at small events. Hence, these
new simulations should be key to understanding earthquake rupture processes.
This could help gain an understanding of whether patterns of microseismicity
might be used to help predict earthquakes. The attainment of this milestone not
only represents an advance in our computational ability to simulate earthquakes,
but will allow us to understand the earthquake process better by creating
simulated data sets that can be compared with data on real earthquakes. The
attainment of the next milestone (Second Code Improvement) will involve
increasing the efficiency of the code in other ways, now that the parallel
implementation has been achieved, and this will allow even larger and more
realistic simulations to be run.
Computationally, we note this is the first simulation of an earthquake fault using
the Fast Multipole technique, using a library originally developed for
astrophysical, gravitationally-interacting bodies. As shown in Figure 4, this
technique leads to enormous savings over traditional full-interaction methods.
Note that the Multipole method results in an improvement in scaling on a single
processor, and that the performance is continually increased by employing
additional processors (for sufficiently large problems).

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 17 of 30

Figure 4: PARK: Scaling of time required per time step using traditional N squared full interaction
method, the Multipole method on one processor, and the parallel improvement found with
additional processors (to 256).

Simulation details

All of the necessary material that describes the First Code Improvement
Milestone can be found within the appropriately named subdirectories under the
1st_Code_Improv_Milestone directory in the public server at
http://www.servogrid.org/slide/GEM/PARK (or on NASA machines turing or
chapman). Instructions are included that will allow duplication of the results.
Included in the in and out directories are all the materials from the First Code
Improvement Milestone run with 150,000 elements and 256 processors for 5,000
time steps. For code testing purposes on one's own system it is useful to set the
number of time steps in the prk.dat.150003 file to a smaller number than 5,000
for the initial run; even 2 would be reasonable for the first run.

PARK

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 18 of 30

The materials in these directories include:
“Milestone_Certification_Data.txt” - a file that gives the time required for the First
Code Improvement run and describes various parameters of the run.
“README-setting_up_input_files.txt” - a file that tells one how to understand the
input files including an explanation of how the elements are created
from the input files.
README-Compile.txt - a file that tells how to create both the Multipole library
and the PARK fault files using the appropriate Makefiles.
in - a directory that contains the input files that were used in the First Code
Improvement run.
out - a directory that contains the output files that were generated in the First
Code Improvement run.
src-bin - a directory that contains the PARK and related fault application files
used in the First Code Improvement run. The versions of this directory on turing
and chapman also have the object files and executable binary file (named
“park”).
Chapman is described at http://www.nas.nasa.gov/About/Profile/resources.html.
Particulars relevent to this run (current as of November 2003) are:

Chapman, an SGI Origin 3000, is currently the only 1,024-processor
single-image, shared-memory system in existence, with one operating
system and a single address space. Chapman will become a major
component of the IPG (Information Power Grid), and is currently being
used to demonstrate that applications can scale to 1,024 processors on
this machine. The system has 128 gigabytes of main memory, and 2
terabytes of FC Raid disk storage.

PARK References

Salmon, John K, and Michael S. Warren, Parallel out-of-core methods for N-body
simulation. In Michael Heath, Virginia, Torczon. et. al., editiors, Eighth SIAM
Conference on Parallel Processing for Scientific Computing, SIAM, 1997.

Michael, S. Warren, John K. Salmon, Donald J. Becker, M. Patrick Goda,
Thomas Sterling, and Gregoire S. Winckelmas. PentiumPro Inside: I. a
treecode at 430 Gflops on ASCI red, II. Price/performance of $50/Mflop on
Loki and Hyglac. In Supercomputing, ’97, Los Alamos, 1997, IEEE Comp.
Soc.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 19 of 30

Code Description – GeoFEST

GeoFEST simulates stress evolution, fault slip and plastic/elastic processes in
realistic materials. The products of such simulations are synthetic observable
time-dependent surface deformation on scales from days to decades. Scientific
applications of the code include the modeling of static and transient co- and post-
seismic Earth deformation, Earth response to glacial, atmospheric and
hydrological loading, and other scenarios involving the bulk deformation of
geologic media.
Diverse types of synthetic observations will enable a wide range of data
assimilation and inversion techniques for ferreting out subsurface structure and
stress history. In the short term, such a tool allows rigorous comparisons of
competing models for interseismic stress evolution, and the sequential GeoFEST
system is being used for this at JPL and UC Davis. Parallel implementation is
required to go from local, single-event models to regional models that cover
many earthquake events and cycles.
GeoFEST uses stress-displacement finite elements to model stress and flow in a
realistic model of the Earth's crust and upper mantle in a complex region such as
the Los Angeles Basin. The model includes stress and strain due to the elastic
response to an earthquake event in the region of the slipping fault, the time-
dependent viscoelastic relaxation, and the net effects from a series of
earthquakes. The physical domain may be two or three dimensional and may
contain heterogeneous materials and an arbitrary network of faults. The physics
models supported by the code include isotropic linear elasticity and both
Newtonian and power-law viscoelasticity via implicit/explicit quasi-static time
stepping. In addition to triangular, quadrilateral, tetrahedral and hexahedral
continuum elements, the program supports split-node faulting, body forces and
surface tractions.

Algorithm
GeoFEST reads in a tetrahedral mesh and information on boundary conditions,
faulting events and variations in time. The equilibrium conditions are computed
based on solution of the elastostatic equations through the finite element method.
Then viscoelastic evolution of the stress field is computed based on an implicit
technique applied on a series of time steps.

Numerical Methods

Details are found in the GeoFEST User’s Guide, which is posted at:
http://www.openchannelsoftware.org/projects/GeoFEST and
http://www-aig.jpl.nasa.gov/public/dus/quakesim/GeoFEST_User_Guide.pdf.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 20 of 30

In brief, the elastostatic solution is computed using standard elastostatic finite
elements, as found in (e.g.) Hughes. The sparse positive definite system of
equations is solved by the Diagonally Preconditioned Conjugate Gradient
(DPCG) method.
For the viscoelastic time steps we form a modified stiffness matrix and right-hand
side terms according to the method of Hughes and Taylor (1978), which again
results in a positive definite system. Each time-step solution is found by the same
DPCG function.
Slip on faults is accommodated by a split node technique (Melosh and Raefsky,
1981) that modifies the right-hand side of the matrix system at nodes local to the
fault that slips.

Parallel Implementation

We have linked GeoFEST to the Pyramid library
(http://www.openchannelsoftware.org/projects/Pyramid) and rely on Pyramid
functions for parallel domain partitioning and communication between nodes.
This results in one change in processing, and some changes in the code.
There is now a preprocessing step before GeoFEST is run on parallel machines.
This is a command-line invocation of an application “gfmeshparse”, which derives
a full connectivity description from the GeoFEST input file for PYRAMID’s use.
Note that in the GeoFEST-4.3P download, this application is called “meshgen.”
Changes to GeoFEST are chiefly in the use of PYRAMID. PYRAMID is used for
partition information, resulting in each processor having a compact segment of
the finite element domain for its formation of the local part of the stiffness matrix
and solution. PYRAMID is also used for combining these local solution estimates
and conjugate gradient vectors at each iteration within of each time step using
the “globalize” function that combines the local information and ensures each
processor has valid data. A final merging within PYRAMID allows GeoFEST to
write a single result file with every node and element represented correctly and
uniquely.
Figure 5 shows how time is spent on four processors (stacked vertically) during
the Conjugate Gradient iterations. Two iterations are shown, with blank (black)
areas indicating the domination of numerical calculation. Red shows the
“WAITALL” state that results when some processors finish local operations
earlier than others and the matrix-vector product is combined across processors
that have adjacent partition information (arrows show communication among
these partition-adjacent processors). Violet indicates the “ALLREDUCE” function
of parallel communication that is required to globally combine parts of a vector
dot product.
Beyond the interest in seeing the fingerprint of a parallel conjugate gradient
operation, this image shows the dominance of computation over communication
time (black >> colors), and the acceptable (but not perfect) load balance of the
partitioned work.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 21 of 30

Figure 5: GeoFEST: Fine-detail image of the portion of a GeoFEST run that represents most of
the computer time, indicating good parallel performance. Four processors are represented along
the vertical axis, and time is represented along the horizontal axis (a 50 millisecond time clip is
shown above). Two iterations of the Conjugate Gradient algorithm, of the thousands of iterations
making up this simulation, are shown. Three features indicate this algorithm will scale to very
large problems: 1) The computational load (thin horizontal turquoise line on black background) is
about the same for each processor. 2) The time spent in synchronization and communication (red
and violet) is a small fraction of the total. The white arrows indicate the inter-processor
communication paths among processors where such communication occurs only as needed.
(This explains why some processors spend more time in synchronization than others even though
the fraction of time is small.) 3) (not visible in this plot) the fraction of time spent in communication
does not grow when problem size grows proportional to the number of processors used.

Documentation

The GeoFEST users guide can be found at
http://www-aig.jpl.nasa.gov/public/dus/quakesim/GeoFEST_User_Guide.pdf

The GeoFEST code and validation case may be downloaded from:
http://www.openchannelsoftware.org/projects/GeoFEST
(follow the "GET IT!" link).

GeoFEST

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 22 of 30

Two files should be downloaded:

• the "GeoFEST User's Guide" (a pdf file, GeoFEST_par_5P.pdf) and
• the "GeoFest 4.3p" (a compressed tar file, GeoFEST-4.3p.tgz).

Another helpful link from the download area is "GeoFEST example" in the left
margin under "Additional resources." This link produces an html interactive guide
to a simple GeoFEST input file, which illuminates the input format for GeoFEST.

The User's Guide covers the following. The Introduction describes the use of the
finite element method for stress and deformation simulation for models of
earthquake faults that include many of the complexities of crust and mantle
materials. The Features section describes the kinds of physics and boundaries
currently supported in GeoFEST. The Theory of Operation section covers the
mathematical and computational basis of the GeoFEST simulations, including the
mathematics of viscoelastic mechanics, the finite element formulation, the implicit
time-stepping scheme, the split-node implementation for faults, and the basis of
parallel computation. The Input/Output section describes the formats and
meanings of the parts of the relevant files. The section titled Running GeoFEST
includes compilation details and parallel execution. There is an annotated sample
2D input file (this corresponds to the "GeoFEST example" interactive link from
the GeoFEST Open Channel page, mentioned above). Finally there are two
appendices. The first provides flow charts describing the basic organization of
the GeoFEST code at the source level, including how GeoFEST links Pyramid
calls for parallel operation. The second describes all GeoFEST functional
routines, organized by source file.

The compressed file “GeoFEST-4.3p.tgz” may be unpacked using "tar xzf
GeoFEST-4.3p.tgz" (on UNIX systems) or the equivalent. This creates a
directory GeoFEST-4.3p which contains subdirectories geofest, MeshGen,
Pyramid, and a text guide "README." Follow the directions in “README” to
complete the download and configure the GeoFEST compilation for your
machine. One should note that additional libraries are necessary (Pyramid and
ParMetis, both of which are freely distributed at the links listed in “README”),
and a soft link must be made to configure GeoFEST with Pyramid. (The entire
process should take just a few minutes). Note that several example files named
“Makefile.*” are given in the geofest directory to support various systems and
compilers. These may be used as examples for systems not yet supported
(usually new compilers or parallel systems are a matter of choosing appropriate
compiler flags and incorporating these into the make system).

The MeshGen directory contains a separate sequential program. In particular
one will find FORTRAN 90 source GEN_GeoFEST.f90 and a Makefile with
support for several FORTRAN 90 compilers. Successful compilation will result in
an executable named "meshgen". It generates additional connectivity
information from a provided mesh file, and this information is necessary for
running Pyramid-enabled parallel GeoFEST. The MeshGen program must be run

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 23 of 30

on the GeoFEST input file to create a second file (usually with matching prefix to
the GeoFEST file and with suffix ".jpl") containing additional mesh information.
Then both files are used in a subsequent parallel GeoFEST simulation. This use
is described in the subsection "Running the GeoFEST parallel version" in the
User's Guide, repeated here for convenience:

"Running the parallel version of GeoFEST is very similar to the
sequential version, with two main differences. The first is that a .jpl
file is required in addition to the regular GeoFEST input file in order
for the parallel version to successfully execute. This file includes
auxiliary geometry data needed by Pyramid to partition the mesh
into subdomains. The second is that the output directory path must
be specified if the user does not want the output to be written in the
./ directory (which is the default).

“One additional step must be taken with the input for the parallel
version. The user will use the meshgen program to convert the
regular GeoFEST input into an input file that the parallel code can
use (with the .jpl extension). To invoke this program the user simply
enters "meshgen", and is interactively prompted to enter the input
filename. (Upon completion, filename gives rise to the new file
“filename.jpl.”)"

The Pyramid directory is empty, and is provided for creating the necessary soft
links for the Pyramid library (see "README" in the geofest directory).

Under the geofest directory is a subdirectory validation. The "README" file
there describes using the meshgen program followed by GeoFEST, followed by a
script "summa.pl" that writes a summary of the generated output file, allowing the
user to check the correctness of the locally built system. The simulation uses the
local file test.dat, which causes GeoFEST to perform ten time steps on the
Landers three-fault geometry meshed with about 350,000 elements. It takes a
few minutes to run.

Scaling Analysis

GeoFEST processing for the benchmark case naturally divides into three phases:
• Input, including reading the mesh file and creating the mesh partition data

for each processor;
• Elastic, where the initial equilibrium state is computed;
• and Viscoelastic evolution, where a sequence of time steps follow the

relaxation of shear stresses in viscous material.

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 24 of 30

Figure 6 shows where time is spent for the milestone case (64 processors, 1.4
million elements, 1,000 time steps)2. The preponderance of time is taken up by
the viscoelastic time step portion of the code. It is clear that unless many more
processors are used (or many fewer time steps of simulation), the scaling of the
viscoelastic steps determines the time one may expect for a simulation to
complete.

A single Viscoelastic time step consists of construction of a stiffness matrix (and
right-hand side), followed by solution of this matrix by the parallel conjugate
gradient technique (many iterative steps). So the Viscoelastic segment of Figure
6 represents 1,000 time steps, each consisting of roughly 200 iterations of the
sparse solver. One iterative step consists chiefly of a sparse distributed matrix
vector multiply and three distributed vector dot products (plus some scalar-vector
operations that may be neglected). In Figure 5, the portions represented by

2 For 8 of the 1,000 time steps, a snap-shot of full displacement data was captured to a file (as
wad done in the baseline case for Milestone E).

Figure 6: Fraction of total wallclock time for each phase of the simulation (Input, Elastic
initial solution, and the Viscoelastic 1000 time steps) for the 1.4 million finite element
Landers mesh on 64 processors of Thunderhead.

GeoFEST

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 25 of 30

turquoise lines on black are the local operations for the sparse matrix-vector
product (the finite element domain has been partitioned among the processors in
contiguous pieces). The red bars indicate synchronization and combining of the
solutions where nodes are shared among adjacent processors. The violet
represents the synchronization and communication that combines local dot
products into full values across all processors.
The operations required for construction of the stiffness matrix are small. If we
represent the number of elements as Nelts, and number of iterations as Niters,
stiffness construction operations number:

~3500*Nelts = ~5 billion for the Nelts = 1.4 million
compared to the operations required for a

Niters = ~200 solution,
which has operation count

~300* Niters *300* Nelts = ~80 billion.

We show in Table 3 the time for completing the time step portion for several short
(5 time step) runs of varying size, on Thunderhead. Problem sizes were
constructed to approximate a constant number of elements in each processor for
4, 16, and 64 processors. Figure 7 shows the speed of solution for these cases:
"work" is taken to be the operations involved in the iterative steps. This plot
proves communication overhead is not growing faster than computational time as
we scale the problem size with number of processors. The result is excellent
scaling. Problems with > 4,000 elements per processor see negligible parallel

Table 3: Table 3 shows the problem sizes and run times of GeoFEST (for the viscoelastic
simulation phase) on Thunderhead using different numbers of processors. In order to make
this scaling study, the milestone problem was reduced to 5 time steps (rather than 1,000)

Number
Processors

Number
Elements

Viscoelastic
Ops

Wallclock (s)
Operations/
wallclock (s)

4 82384 2.03E+12 2821.2 7.20E+08
16 82384 2.03E+12 738.9 2.75E+09
64 82384 2.03E+12 252.3 8.05E+09

16 3.53E+05 1.38E+13 4912.7 2.82E+09
64 3.53E+05 1.38E+13 1229.7 1.12E+10

64 1.40E+06 8.11E+13 7247.6 1.12E+10

Data for Scaling Runs for GeoFEST

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 26 of 30

overhead, and even smaller problems show substantial speed up with many
processors.

Figure 7: GeoFEST: Scaling of work (on linear scales) in GeoFEST time-step function with
number of processors on three sizes of problems (on Thunderhead cluster computer, GSFC).
Blue indicates ideal scaling (from 4 processors). Expressing work in operations/wallclock time
allows comparison of sizes in a single plot.

Figure 7 demonstrates that the GeoFEST scaling (on the dominating time-
stepping loop) is excellent. Sufficiently large problems (353,000 and especially
1.4 million elements shown here) have trivial parallel overhead on 64 processors.
More complete scaling analysis considers the time for problem set-up, elastic
solution, and writing results to files. Benchmark-type problems with 1,000 time
steps are dominated by the scaling behavior shown above, for the example
problem (1.4 Million elements, 64 processors).

GeoFEST

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 27 of 30

Scientific and Computational Significance

The baseline problem was modeled after the Northridge earthquake (single thrust
fault). Analysis of individual earthquake events with attention to their geographic
settings is a long-term, important area of simulation and research. But the ability
to solve domains with millions of elements implies we can simulate regions with
multiple faults, such as the Los Angeles basin. Interactions among slipping faults
and possible emergent structures from these nonlinear interactions appears to be
the next advance in forecasting earthquake risk. This is a new and promising
area for simulation, data comparison and testing of concepts. Many kinds of
simulation codes are beginning to be employed for this new kind of work across
the earthquake community, but a finite element code has close to the greatest
degree of flexibility in including the effects of realistic structures in the Earth in a
heterogeneous domain. We expect this improved GeoFEST will have unique
value in validating these other simulations and determining when other multiple-
fault models are leaving out too many material effects.
Computationally, we have demonstrated efficient parallel Conjugate Gradient
solutions for 3-D faulted-system finite elements, and linked our method with the
PYRAMID library. The parallel Conjugate Gradient is no surprise, as it has been
demonstrated in other domains of physics. But a freely-available source code for
faulted domains will be helpful to the US simulation effort. Linking with
PYRAMID is a convenient way to handle issues of partitioning and
communication. More important, it is a first step to using the PYRAMID functions
for parallel adaptive mesh refinement. Adaptive mesh refinement is essential to
attaining high-quality solutions to problems with widely varying stress intensities
in three dimensions. Parallel mesh refinement has the additional advantage of
solving problems with size commensurate with the memory space of massively
parallel computers without handling the associated mesh files with solid meshing
programs, which are nearly all written for sequential machines. A domain can be
described and meshed at a relatively low mesh density, imported to the parallel
system, and then key locations in the mesh can be refined to the degree needed,
expanding the number of elements by large factors (possibly hundreds or more).

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 28 of 30

Simulation details

The GeoFEST code and milestone input file are available on the Goddard Space
Flight Center machine Thunderhead. Building the code on Thunderhead is
accomplished by following these steps:
Note: Use the INTEL compiler by typing "mpi_env -p intel"

 Get the code from ~nortonc/Milestone/GeoFEST.tgz
 "tar xvzf GeoFEST.tgz" in your home directory ~/
 "tcsh" to use tcsh
 cd ~/GeoFEST/Pyramid-3D/Pyramid-3D/ParMetis/ and type "make"
 cd ~/GeoFEST/Pyramid-3D/ and type "make -f Intel"
 cd ~/GeoFEST/geofest/ and type "make -f Intel"
 type "exit" to leave tcsh

This results in an executable program called GeoFEST in ~/GeoFEST/geofest.

Follow these steps to run the code on Thunderhead.
 Start LACE Task manager with "ltmsuper"
 Move executable to your run directory

cp ~/GeoFEST/geofest/GeoFEST ~/rhome/GeoFEST/geofest/GeoFEST

 Setup input (input.dat and input.dat.jpl for 4, 16 and 64 processors)
cd ~/rhome/GeoFEST/geofest/

ln -s /data1/nortonc/Quakesim/GeoFEST/geofest/Visuals/LandersGr4.dat input.dat
ln -s /data1/nortonc/Quakesim/GeoFEST/geofest/Visuals/LandersGap4.dat.jpl input.dat.jpl

The 16 processors case files are LandersGr16.dat and
LandersGap16.dat.jpl
The 64 processors case files are LandersGr64.dat and
LandersGap64.dat.jpl

 Request processors and run the code
 cd ~/GeoFEST/geofest/

 ltmbegin -n 4 -m 120

 ltmpi -p 1 GeoFEST input.dat /data1/<your loginid>/<output directory>

 OR
ltmpi -p 1 GeoFEST input.dat /data1/<your loginid>/<output directory> >& /data1/<your
loginid>/OUT.log

Note: -n means number of processors

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 29 of 30

 -m means number of minutes requested
 -p 1 means use one CPU per node (rather than 2 CPUs per node

which is the default)
 For the16 processor case use -n 16 -m 300
 For the 64 processors case use -n 64 -m 360

Follow these steps to interpret the results.
 When the code runs, some welcome and diagnostic messages will be

printed to the screen.
 Visualization and the conjugate gradient history files will be written in

/data1/<your loginid>/<output directory>.
 For scalability timings, capture ("grep -i pyramid OUT.log") the output that

looks like this (the bracketed items are explanatory and the data will be on
the screen and also in OUT.log if you chose to save it as suggested
above):

 PYRAMID Current Time: xxxx.xx [A. Loading Data Start]
 PYRAMID Current Time: xxxx.xx [B. Elastic Soln Start]
 PYRAMID Current Time: xxxx.xx [C. Time Stepping Start]
 PYRAMID Current Time: xxxx.xx [D. Program Termination]

The total runtime will be in step D.

 In order to examine scalability, the key number is the average time per
iteration in the time stepping stage. Since the problem size grows
somewhat proportionally to the number of processors in a scaled fashion
4, 16, 64, this number should look roughly constant across these problem
sizes.

 Compute the average time per iteration as (D-C)/X where X is the total
number of iterations for each problem size

 4 PE case: X = 83,256
16 PE case: X = 132,429
64 PE case: X = 195,914

As an aside, the baseline case ran in about 13 hours for a problem about the
same size as the 4 PE case above, so for scalability relative to the baseline case
the 4 PE case would have to run in less than 3 hours. Our experience has been
that the 4 PE case can run in 1 hour (dual cpu mode) or less (single cpu mode).

Milestone F – First Code Improvement

January 9, 2004 JPL Task Order 10650 Page 30 of 30

Thunderhead is described at:
http://newton.gsfc.nasa.gov/thunderhead/index.htm. Particulars relevant to this
run (current as of November 2003) are:

Thunderhead is a 512-processor Commodity Cluster located at
NASA/Goddard Space Flight Center. It features 512 2.4Ghz Pentium 4
Xeons, 256Gb DDR memory, 20Tb disk space and 2.2Gpbs myrinet fiber
interconnect.

References

Thomas J. R. Hughes and Robert Taylor, “Unconditionally Stable Algorithms For
Quasi-Static Elasto-Plastic Finite Element Analysis.” Computers & Structures,
Vol. 8, pp. 169-173, 1978.

Thomas J. R. Hughes, “The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis.” Dover, Publication, INC., Mineola, New York, 2000.

H. J. Melosh and Raefsky, “A Simple and Efficient Method for Introducing Faults
into Finite Element Computations.” Bulletin of the Seismological Society of
America, Vol. 71, No. 5, October 1981.

